A Numerical Method for Solving ODE by Rational Approximation

نویسنده

  • M. Gadella
چکیده

We develop a numerical method to the integration of ordinary differential equations based on a new look at the Padé approximation. We compare our results with those obtained with the Taylor method. Mathematics Subject Classification: 65L05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Volterra's Population Model via Rational Christov Functions Collocation ‎Method

The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...

متن کامل

A rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations

The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...

متن کامل

An Efficient Numerical Method to Solve the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid

In this paper, the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linearly stretching sheet is solved using the combination of the quasilinearization method and the Fractional order of Rational Chebyshev function (FRC) collocation method on a semi-infinite domain. The quasilinearization method converts the equation into a sequence of linear equations then, using the FRC coll...

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013